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Abstract

This paper examines an intervention to change prospective elementary teachers' knowledge
and beliefs about mathematics education. The intervention consisted of a sequence of
mathematics courses, a methods course, and a curriculum seminar in which establishing a
community of learners was a central feature. The concept of community embodies the
following elements: (a) teaching and learning is collaborative; (b) different approaches to
problem situations are valued; (c) responsibility for understanding is shared; and
(d) authority for knowing is internal and collective. First the authors discuss the ways in
which creating a learning community made a significant contribution to empowering
prospective elementary teachers as learners of mathematics. Next they discuss implications
of this intervention for teaching mathematics to children. They provide brief cases of two
of their graduates in their first year of teaching to illustrate the complexity of connecting
their own experiences as learners of mathematics to new visions of classrooms they might
construct for children. They conclude with a set of questions addressed to mathematics
educators attempting to reform mathematics education by reforming preservice teacher
education.



THE ROLE OF A LEARNING COMMUNITY IN CHANGING PRESERVICE.
TEACHERS' KNOWLEDGE AND BELIEFS ABOUT MATHEMATICS EDUCATION'

Sandra K. Wilcox, Pamela Schram, Glenda Lappan, and Perry Lanier'

Commonly, preservice elementary teachers bring to their professional studies deeply
rooted ideas about the teaching and learning of mathematics. These ideas are embedded
in the content knowledge, the pedagogical experiences, and the epistemological orientation
of prospective teachers. They view mathematics as a fixed body of knowledge that is best
learned by memorizing facts, rules and formulas, and procedures for applying them to
textbook exercises. They view the role of the teacher as carrying out goals determined by
text material, providing demonstrations and examples of tasks to be completed, and checking
assignments for completeness and accuracy. They expect their teacher preparationprogram
to provide the techniques to make teaching efficient and effective. This conception of
mathematics education contrasts with the nature and the creation of knowledge in the
discipline (Davis and Hersh, 1981), and it denies children's natural capacity for and interest
in understanding mathematical ideas (Carpenter, 1985; Resnick, 1983; Riley, Greeno, and
Heller, 1983; Romberg and Carpenter, 1986). Further, it conceives of teaching as a matter
of technical competence rather than reflection and decision making based on what children
are coming to know.

The literature on the impact of professional study on teachers' beliefs points to the
difficulty in overcoming ingrained notions developed during previous school experiences
(Ball, 1988; Feiman-Nemser, 1983; Tabachnick, Popkewitz, and Zeichner, 1979-80; Zeichner,
Tabachnick, and Densmore, 1987). If we are to cause prospective teachers to rethink these
beliefs, we must create situations where these beliefs are faced and reconsidered. This
demands powerful interventions that challenge and yet are safe situations in which students
can take mathematical, emotional, and intellectual risks. Creating a community of learners

'An earlier venion of this paper wu presented at the annual meeting of the American Educational Research Association,
Boston, April 1990. The authors wish to thank Mary Kennedy for her comments on an earlier draft.

2Sandra K. Wilcox, assistant professor, and Pamela Schram, instructor in the Department of Teacher Education at Michigan
State University, are senior researchers in the National Center for Research on Teacher Education (NCRTE). They are also
researchers in the Elementary Mathematics Project, a longitudinal research project studying the change in preservice teachers'perceptions and beliefs about mathematics, what it means to know mathematics, and how mathematics is learned. Glenda
Lappan, professor in MSU's Department of Mathematics and NCRTE senior researcher, is associate director of the project and
principal designer and instructor for the sequence of mathematics courses in this study. She is currently on leave at the National
Science Foundation in Washington, D.C., serving u program director for tucher preparation.

Perry Lanier, professor in MSU's Department of Teacher Education, directs the project and the Academic Learning
Program from which the 23 preservice elementary teachers are drawn. The Academic Learning Program is an alternative
teacher education program that emphasixel the development of a thorough understanding of school subject matters and a
conceptual change view of learning and teaching. Each teacher candidate in the program has a unique field experience which
involves working with a mentor teacher and a classroom of children each term over a two-year period.
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with shared responsibility for learning holds the promise of providing such an environment
(National Council of Teachers of Mathematics, 1989a, 1989b; Schwab, 1976).

What is the building of a community of learners likely to contribute to learning to
teach mathematics? We have ample evidence that learning in isolation from interaction
with others is likely to result in students' constructing mathematical worlds that have little
fit with the accepted "truths" of the discipline (Erlwanger, 1973). One might extrapolate that
learning to teach in isolation from the experience of personal interactions with others'
exploring the discipline itselfhow one learns and what it means to know and do
mathematicswould lead to equally impoverished views of what it means to teach
mathematics. Thus, the creation of a community in which one's private world is exposed
has the potential to challenge the learner's currently held views and lead to the constmction
of more acceptable and powerful views. It is through the give and takethe back and forth
of shared questions, ideas, and feelingsthat one-to-one community begins.

The opening up of oneself to community can, as Schwab (1975) puts it, happen "in
one and only one waythrough speech, by talk" (p. 32). He calls this "symbolic exchange"
and describes the implications for classrooms:

It is of first importance that the pattern of classroom life be rich in occasions
for this symbolic exchange among children, this sharing, through language, of
things seen and significances perceived. Such symbolic sharing of experiences
is the uniquely effective means by which children convey and receive
recognitions of their personality, of their existence as affecting personality and
affected individuals. It is also a means by which children convey to one
another the bread-and-butter promise of mutual support in difficulty. It is the
means, too, by which children find sources of help and occasions for the giving
of help. (p. 32)

We believe that these ideas are equally valid with preservice teachers. The act of
receiving help, of being nurtured, is important. But of equal importance, especially to
preservice teachers, is the giving of help. However, herein lies one of the
trapsdistinguishing between help given by telling, which results in dependent learners, and
help given by questioning and collaborating, which results in empowered learners. Lampert
(1985) describes the dilemma of teaching as

an argument between opposing tendencies within oneself in which neither side
can come out the winner. From this perspective my job would involve
maintaining the tension between . . pushing students to achieve and
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providing a comfortable learning environment, between covering the
curriculum and attending to individual understanding. (p. 183)

Preservice teachers in their own learning of mathematics and learning to teach need
to confront such dilemmas. Do teachers insist on telling learners how to solve the problem
or do they give them ownership of ideas by contributing prompts, questions,
counterexamples to wrong directions, or strategies for thinking about the problem situation?
The former moves students and teacher quickly through material, but only a few truly
encounter the potential of the ideas embedded in the problem and its solution. The latter
approach has the potential to open ideas up to more of the community and shape the
understanding of the one who gives help. Cobb (1989) argues that "in attempting to
understand the child's mathematics, the researcher frequently elaborates his or her own
mathematics" (p. 32). The giver of help who seeks to understand the current conceptions
of his or her students/ colleagues will also have occasion to reflect on his or her own
understanding.

We have a conception of mathematicians as working on the boundaries of the
discipline, actively engaged in pushing those boundaries outward. This conception works for
students of mathematics as well. They, just as mathematicians, are working on the edge of
their knowledge. The fact that others have previously passed this way mathematically does
not take away from the excitement and the struggle that can accompany personal and group
sense making in mathematics. As Cobb (1989) has argued:

Each child can be viewed as an active organizer of his or her personal
mathematical experiences and as a member of a community or grovp who
actively contributes to the group's continued regeneration of taken-for-granted
ways of doing mathematics. . . Children also learn mathematics as they
attempt to fit their mathematical actions to the actions of others and thus to
contribute to the construction of consensual domains. (p. 34)

By the tasks chosen and the nature of the discourse orchestrated, a teacher surrounds
students with a safety net (or a straitjacket, depending on the nature of the choices) that
helps guide the creation of mathematical knowledge that reasonably fits with the "truths" of
the discipline. This is the power and the awesome responsibility of the teacher in the
creation of a community of learners. Cobb (1989) supports this direction:

If we are serious about encouraging students to be mathematical meaning-
makers, we should view the teacher and the students as constituting an
intellectual community. The classroom setting should be designed as much
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as possible to allow students to do their own truth-making. This approach
contrasts sharply with codified, academic formalism that, to the initiated,
signify communally-sanctioned truths that have been institutionalized by
others. (p. 38)

The emphasis on meaning making is key to changing the current conceptions of
preservice teachers about mathematics and the learning of mathematics. If students are to
build mathematical schemas they can use in a flexible way to approach new problem
situations, then they must develop the disposition to seek ways to make sense of new ideas
rather than use short-term memory to "survive the test." Establishing a classroom where
arguments are made to support conjectures, and where the criterion for what makes sense
is determined by students and teacher working together, is likely to engender in students a
very different view of mathematics from the typical rule-and-procedure orientation.

Alibert (1988) provides a picture of classroom discourse that is supportive of what
we believe is important for preservice teachers to experience in the making of mathematics.
He argues for new customs in the classroom, the first of which is uncertainty:

A large place must be left for uncertainty in the learning process. Uncertainty
in relation to mathematical knowledge is institutionalized in the notion of
conjecture, the validation of which, and even the production of which, is
devolved onto the community of students. (p. 32)

Arguments about proof are made to convince other students, not simply addressed
to the teacher, to show that one has organized knowledge in an acceptable way. New
mathematical ideas and tools are organized in such a way that they appear to be needed to
solve some perplodng problem. And, finally, reflection occurs that helps students become
more consciously aware of their own knowledge. We hold these to be valid and desirable
ways for children to meet mathematics. And we hold these as equally valid and desirable
ways for future teachers of mathematics to meet mathematics and questions of teaching and
learning mathematics.

Community has another powerful aspect to contribute to empowering future teachers.
Community can be used to encourage the propensity to value mathematics, to use
mathematics, and to share mathematics. We get support for these ideas from Schwab
(1976). Collaborative activities can be carried out in such a fashion that the members of
the community develop propensities (a) toward service and sympathycollaborative
learning, (b) toward the suspension of impulse and the valuing of different methods and
points of view, (c) toward listening to, understanding, and taking responsibility for one's
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collaborators, and (d) toward the negotiation of what is to be allowed into the domain of
working knowledge of the grouP.

This paper examines an intervention study in an elementary teacher education
program. The interventiona sequence of mathematics courses, a methods course, and a
curriculum seminarhad as a basic goal demonstrating the feasibility of creating in new
teachers a more conceptual level of knowledge about mathematics and the teaching and
learning of mathematics. A central feature of the intervention was establishing a community
of learners. The question this paper addresses is, What is the building of a community of
learners lik4 to contribute to learning mathematics and learning to teach mathematics?

We first discuss the ways in which creating a learning community promoted
conceptual change in our preservice teachers' beliefs about themselves as learners of
mathematics, what it means to know mathematics, and how mathematics is learned. We
argue that this intervention made a significant contribution to empowering prospective
elementary teachers as learners of mathematics.

We move then to a discussion of the implications of this intervention for teaching
mathematics to children. We provide brief cases of two of our graduates in their first year
as classroom teachers to illustrate the complexity of connecting their own experiences as
learners of mathematics to new visions of the mathematics classrooms they might construct
for young learners. We conclude with a set of questions that emerges from our research
findings, a set of questions of interest and urgency for all mathematics educators attempting
to transform elementary mathematics education by reforming preservice teacher education.

The Intervention
The 23 students studied by the Elementary Mathematics Project entered Michigan

State University's Academic Learning Program in September 1987 and graduated in June
1989. In this intervention, the teacher candidates were enrolled in a sequence of three
nontraditional mathematics courses devoted to an exploration of numbers and number
theory, geometry, and probability and statistics.' A methods course and a curriculum
seminar drew on the content courses and field experiences to engage prospective teachers
in reconsidering their notions about mathematics education.

Several assumptions guidedour development and implementation of this intervention.
First, the selection of mathematical content had to meet certain criteria: What does
knowing this idea enable a student to do? To what other mathematical ideas is it
connected? Does it require students to engage in doing mathematicsanalyzing, abstracting,

'See Lappan and Even (1989) for a fuller treatment of the mathematical content of the courses.
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generalizing, inventing, proving, and applying? Second, the content and learning
opportunities should require students to communicate their understanding in multiple ways:
engaging in mathematical discourse among themselves and with the teachers using natural
and symbolic language; writing about their reflections on teaching and learning mathematics;
and using multiple representationsnumeric, algebraic, graphic, geometric, spatialto depict
the mathematics embedded in problem situations.

The third assumption concerned our concept of a learning community. Our
conception included a stable cohort of students who would engage in common study and
experience over a two-year period. Our image of community was richer than simply having
groups of students work together on a problem and then report their findings. Our vision
of community was a classroom where students and teacher together engaged in
mathematical inquiry.

In this community, developing ways of knowing was a fundamental mathematical goal.
This included ways of approaching a problem situation, ways of seeking additional
information, ways of making a convincing argument, and ways of knowing that a solution
makes sense. We wanted these students to experience individual, small-group, and large-
group work within that community and consider what each can add to the development of
mathematical ideas. We aimed to create an environment that fostered cooperative learning
and teaching: a set of students working collectively to build mathematical schemas that they
could use in flexible ways to approach new problem situations and a set of faculty planning,
monitoring, instructing, and evaluating progress across courses.

Data Collection and Analysis

Data for the entire cohort of teacher candidates consist of field notes of all class
sessions and video recordings of some, as well as audio recordings of small-group work.
Questionnaires were administered at seven points in the study. We collected samples of
student work that included written assignments and exams. In addition, we followed an
intensive sample of four students. Data from our intensive sample include tape-recorded
interviews conducted at eight points during the program, observations of their student
teaching, and interviews with their mentor teachers and fieldwork instructors. In the third
year of the study, we conducted periodic observations and interviews ofour intensive sample
in their first year of teaching to study both knowledge and contextual constraints in
implementing a conceptual approach tn elementary mathematics education.

To investigate the ways in which community was constructed, we analyzed classroom
observation data for evidence of elements we take as constitutive of community:
(a) teaching and learning is collaborative; (b) different approaches to problem situations are
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valued; (c) responsibility for understanding is shared; and (d) authority for knowing is
internal and collective. To investigate the ways in which community contributed to changing
preservice teachers' beliefs about what it means to know mathematics, how mathematics is
learned, and the role of the teacher in the mathematics classroom, we analyzed classroom
observation data together with student questionnaires, interviews, and written work.

Contributions of Community to Learning Mathematics

Establishing a Norm of Collaboration and Shared Responsibility
for Understanding

The students who entered this preservice education program were quite unprepared
for the experience they were to encounter in the mathematics classes. Andrea's' comment
was representative of what every student we interviewed had to say:

There is a difference between other math classes and this one. In other math
classes you don't say anything. You just sit there and watch the professor
write problems on the board all hour. In this class, you couldn't get away with
just sitting there and [expect to] learn because you couldn't get anywhere.
Right away I knew I had to change the way I thought about this aud that
wasn't easy at first.

Andrea made this observation during a class discussion about the nature of the problems
the teacher posed. Posing "big probleme that did not lend themselves to direct, immediate,
singular algorithmic solutions contributed to students' relying on each other for insights on
how to tackle a problem situation.

But working together was not automatic. During the first course on number theory,
we observed within the small groups a mix of collaborative investigationstudents
questioning each other, making suggestions about various strategies, trying to explain what
they were doing and what they were gettingas well as individual attempts to solve
problem& The efforts of Wanda, Chuck, Denise, and Lynn, four students who frequently
worked together, are illustrative.

In the first course on number theory, the study of the structure of numbers was
introduced with the "Locker Problem":

Names of preservice teachers are pseudonyms.
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In a high school there are 1000 students and 1000 lockers. The lockers are
in a single row in a very long hallway. At the beginning of the school year the
students perform the following ritual; The first student enters the building
and opens every locker. The second student goes to every second locker and
closes it. The third student goes to every third locker and changes the state
of the door. In a similar manner, the fourth, fifth, sixth, . . . student changes
the state of every fourth, fifth, sixth, . . . locker. After all 1000 students have
passed down the hall, which lockers are open?

A partial transcript shows the collective efforts of Wanda, Chuck, Denise, and Lynn at
solving this problem. They decided to check out the first several lockers:

Wanda: So the ninth person goes to locker nine and opens it.

Chuck: What about the factors involved?

Denise: Seven stayed open until the seventh person got there. Five stayed
open.

Wanda: These are primes.

Chuck: Four is closed.

Denise: But 4 isn't prime.

Chuck: So ah primes stay open until that person changes the state: . . . So we
know eventually all primes are closed except for one . . .

Chuck: One, four, and nine are open.

Denise: These are perfect squares.

Wanda: Let's try 4 squared.

Chuck: Just do 16.

Wanda: But you couldn't do just 16 because you might have multiples you have
to close or open prior.

Wanda: [to the teacher who has approached this group] We're going to
conjecture that perfect squares are open.

Teacher: Why? You have a very good conjecture but why? What is peculiar
about square numbers? What is there about the structure of numbers
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so that primes are closed and composites are closed? (Teacher moves
on to another group.]

Denise: Primes get touched only by that person.

Wanda: But why are square numbers open?

Denise: Well, the squares have two people passing over it. . . . Let's look at
composite numbers.

Lynn: It [a composite) gets hit for each factor.

Chuck: Six is 2 and 3 but 4 is 2 and 2, and 9 is 3 and 3. Then why shouldn't
composites be open as well?

Denise: How about if we go back to what you said: 4 is 2 times 2. When you
go over it with the first two it closes, when you go over with the second
two it opens. With nine, the first three opens it, the second three
closes it.

The four pursued this problem together for nearly 30 minutes. It took another set of
guiding question from the teacher to help them rethink what it would mean to have a
repeated factor. Finally they concluded that only square numbers have an odd number of
factors.

This same group worked much differently on the next "big problem" of the number
course ("Magic Johnson and the Rookie"5). Tim had joined their group. In contrast to the
collective efforts we observed with the "Locker Problem," this time Tim worked
independently and Lynn and Denise worked together. Occasionally Wanda and Chuck
would interrupt to see where the other three were with the problem. Wanda and Chuck
seemed interested in what the others were finding, but they contributed little initially to
helping find a solution to the problem. Only after Tim had made some progress in
exploring the problem did they actively join in trying to understand what he had found.

Our observational data showed an increasing reliance on the collective efforts of
members within small groups at problem solving over the three-course sequence. In a set
of activities in the spatial visualization unit, students were to use cubes to construct buildings
from sets of plans. When the teacher introduced the problems, Jason asked if a set of plans

'The problem: Magic Johnson has signed an NBA contract to be paid one-million dollars a year for the next 25 years. The
rookie has agreed to be paid $1 the first year, $2 the second, $4 the third, $8 the fourth, and so forth, Who has the most at
the end of 25 years?

9
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would produce a unique building. The teacher responded by telling students to keep Jason's
question in mind as they constructed their buildings. Further, if they did build different
ones, under what conditions would that be possible. Barbara, Andrea, Allison, and Kelly
(a group that often sat and worked together) each began to create a building checking with
each other as they went along. One set of plans produced several different buildings:

Barbara: Here's how you can add another cube to get a second building.

Allison: [pointing to a spot in her building] Here you can have one or two
cubes.

0 Kelly: Here's my way. Let's see if it's the same as the others. Andrea's is
different. That's four ways.

Andrea: I think there's even more! [She adds another cube to her building.]

Allison: Show me again.

Kelly: You could put one in front. [She adds a cube to Andrea's building and
then checks it against the plans.] Oh no, that changes the front view.

At this point Barbara, Kelly, and Allison abandoned their buildings and moved
around the table to look at Andrea's building. Andrea began to put cubes in various spots
and they all checked each new configuration against the plans:

Andrea: [pointing out three places where cubes were hidden from view in the
plans] You can have 1, 2, 1 in these spots or you can have 1, 2, and
2 . . . Ahl There's lots! You can have any of the options here.

Kelly: Summarize all that.

Andrea: What are the combinations? Three ways here combined with three
ways here.

Kelly: How do we know we've got 'em all?

Andrea: Just look at the ones you can't change.

This group of four had begun the problem exploration individually. However, within two
minutes they had abandoned their individual efforts in favor of a collective approach. What
seemed to dictate the working relationships within groups at any one time was the nature
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of the mathematical task posed and the desire of the students. If the teacher set the task
with an organization that needed to be changed as the work progressed, the students
increasingly felt free to make a change.

The teachers' role in developing norms. Part of what contributed to establishing a
norm of collaboration and shared responsibility for learning was the teacher's interaction
with small groupsher probing questions, the ways in which she extended their thinking, her
recognition that among the groups there were different levels of understanding. She acted
as a guide, posing questions that allowed students to build abstractions and generalizations.
For example, her second interaction with Wanda, Chuck, Denise, and Lynn on the "Locker
Problem" helped them to look more closely at the structure of numbers:

Teacher: What distinguishes composite numbers from square numbers? Look
at their structure and see if you can puzzle it out. . . . Try 36. Figure
out who is going to touch 35. . . . Now try a number that is nonsquare.

The teacher's interactions with various groups exploring the "Magic Johnson" problem
evidenced her awareness of different leveltik understanding. In several groups she
suggested they create a data table to record systematically the data they were generating.
In a group that had already created a data table, she suggested they try to write some kind
of mathematical model for the general case. Sometimes she asked questions to see if
students had the problem conceptualized correctly:

Teacher: You've already figured out it has something to do with exponents. I'm
not going to stay here until you get it sorted out but let's think about
this. Not only do you need to be able to tell what the rookie earns in
a particular year but you need to tell what the total is that he has
earned up to that yearthe cumulative earnings.

One group had an algebraic model and a student was working on a graphical representation.
The teacher pressed the group to think about the various representations:

Teacher: Albert appears to be working on a graphical representation of the
problem. Within your group ask what each of those representations
adds to your understanding of the problem. Under what circumstances
would you go to each one of those representations of the problem?

The role the teacher assumed in small groups was to ask important questior ;, guiding
students in their struggle to make sense of the problems and their solutions. When she was
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satisfied that investigations within the groups had produced sufficient understandings, she
brought the whoh class together to discuss individual group efforts. In this context she
again gently pushed them to consider weaknesses in their arguments so that more powerful
and uonvincing generalizations could become part of the working knowledge of the
community.

Valuing Different Approaches to Problem Situations

One of the goals of this intervention was to develop the mathematical power of
prospective teachers. To do so entailed building a repertoire of strategies and
representations that students could use to solve nonroutine problems. It meant helping
students to become flexible, to see that a variety of methods might be applied to any
particular problem situation. In the second and third mathematics courses, we observed an
increased willingness on the part of the students to engage in mathematical investigations
and an increased confidence in their ability to apply knowledge in unfamiliar problem
contexts. Their exploration of the "Newsgirl Problem" in the final course is illustrative:

The problem: A newsgirl delivers papers daily and once a week collects $5
from her customers. One customer offers her a deal. Each week she can
draw two bills from a bag containing one $10 bill and five $1 bills. Should
she take the offer?

Students were to analyze the problem theoretically and consider ways to simulate the
situation. Small groups of students worked on the problem for about 25 tninutes, and then
the whole class discussed the various ways in which the problem had been analyzed and
simulated.

Andrea, Albert, and Bart drew a probability tree in which the branches represented
favorable and unfavorable outcomes. They reasoned that the probability of an unfavorable
outcome ($2) was 2/3 and a favorable outcome ($11) 1/3. Theoretically in a three-week
period, the newsgirl would get $2 twice and $11 once for an average of $5 per week. This
led to a discussion among several students about the real-world situation and that a
theoretical probability did not guarantee a particular outcome of an event. As one student
described it, the newsgirl could go 10 weeks getting only $2. But another countered, "Yah,
but she could also go 10 weeks and get $11 every week."

Tim's group figured the probability of getting $2 by recognizing the multiplicative
nature of the event (5/6 chance of getting $1 on first draw, 4/5 chance of getting $1 on
second draw: (5/6)(4/5) = 4/6). Alicia's group completed a probability tree showing every
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possible outcome. Jim's group used the idea of expected value. All groups concluded that
the deal from the customer was a fair one.

The simulations suggested by the groups were as various as their analysis of the
situation. Albert's group used the roll of a die for the first draw and pulled a chip for the
second. Tim's group put slips of paper in a bag. Several students felt this was a good
simulation because it was a model of the situation. Others said it was not particularly good
unless you carried out many tries and that it would be hard to distribute paper slips
randomly.

Chuck's group used six pennies, one of which was dated 1963 that they called the $10
bill. Lori's group used spinners, one divided into six parts (one $10, five $1), another
divided into five parts (one $10, four $1). They reasoned that if the first spin was $1, then
you would spin a second time. However, if the first spin was $10, a second spin would not
be necessary. Several students talked about simulations that would be problematic, such as
rolling a die or using one spinner. Their argument was that the situation required a model
where they could remove one element.

During the entire group discussion the teacher participated only minimally,
occasionally asking if any group had approached the problem in a way that was analytically
different. She acknowledged every group effort as a legitimate way of approaching the
problem, even though some were less elegant than others. For example, Alicia's group had
used what we came to call "brute force and awkwardness"listing all possible 30 outcomes
in a probability tree. This was the first analytical tool the students had developed to
investigate probabilistic situations, and some students persistently returned to it as a favorite
mode of analysis, especially if the number of possible outcomes was a manageable size, as
it was in this case. What was significant about this particular event, and many like it, was
that students approached problems in various ways, offered multiple ways of investigating
them, and argued the reasonableness of their conclusions.

Creating a total environment where teaching and learning are collaborative, where
responsibility for understanding is shared, where different approaches to problem situations
are valued can only take place over time.' The willingness of students to take risks in the
whole group required a learning environment in which all students were treated with respect
and where all ideas were taken seriously. As Sharon, one of the students put it,

She [the teacher] always used your answer, without any put-down, to
contribute to class knowledge. Even if it was wrong, it might be a

61n an earlier pilot of the 10-week number theory course, an openness and trust developed within small groups but it was
never matched in the context of the whole group (see Schram, Wilcox, Lanier, and Lappan, 1988).
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counterexample. You were never put down. If you said something, it was
considered seriously. . . What was a no-no was to nut try at all.

The Shift in Epistemological Authority
Perhaps the most significant development among the students was the shift away from

the instructor as the sole source of authority for knowing. The students' exploration of the
,,roblem "Making Purple" is illustrative. "Making Purple" was assigned as a homework
problem in the final course on probability and statistics:

Given the two spinners below and two spins, which situation maximizes the
probability of getting purple [red and blue]: two spins on Spinner 1, two spins
on Spinner 2, or one spin on Spinners 1 and 2?

spa= 1 Spume: 2

In the second class meeting following the assignment of the problem, the teacher
began an exploration of the problem with the whole class. She began by asking whether
students thought the situation was additive or multiplicative. Students posited that the
situation was likely to involve multiplication because a complete trial required an action
followed by another action. The discussion then moved to consideration of ways to analyze
the problem beginning with the situation of two spins on Spinner 2. Allison suggested they
draw a probability tree. Sharon volunteered to go to the board and draw the tree. This is
what she drew:
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Jason suggested that for some kids you might consider dividing the blue section of Spinner
2 into three parts so they could see it as three blues and then construct a tree with six
branches where the probability of each branch was equal. Albert suggested labeling the
branches as those that could lead to a favorable outcome (blue and red) and those that
would lead to an unfavorable outcome (yellow and green).

The discussion then moved to the second spin. They reasoned that the tree needed
to be completed only for the red and blue branches since yellow and green could not yield
purple. Barbara completed the tree:

Teacher: This is the stage of the game when you can run into trouble.
Everything is in the tree but only if we understand what it represents.
Tamara, can you reformulate the problem for us?

Tamara: We want to know when blue-red and red-blue are outcomes.

Teacher: How do we do this?

At this point several students offered arguments to support the multiplicative and additive
aspects of the situation. Next, the class considered other models to represent the situation.
Jim drew two models representing each spin on Spinner 2.

0

1st spin

BR
RD

RR

RO

BO RY

BY
0

BB

Y

2nd spin

There was considerable comment as Jim drew his model. 'That is neat." "Wow, you
could do this with water colors." "This is great for visual learners." "You could use colored
transparencies and overlap them." When Jim had finished his explanation, the teacher asked
if either model, the tree or the geometric representation, was a complete probability of the
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situation: 'The responsibility for the whole class is to help Jim make the best possible,
clearest model from the point Of view of kids' learning."

Jim drew an elaborated model. Just as he finished there was a power outage and the
room, which has no windows, was plunged into near darkness. However, the students
continued the discussion with enthusiasm. Lori suggested using a coordinate grid to locate
all the cells in the model. When the teacher noted that you could use two identical
transparencies and physically turn one and place it on the other, Albert objected:

Albert: That's an arbitrary rule to rotate. How would you explain that?

Teacher: How did we make it make sense with the dice problem [an earlier
problem with a similar structure)?

At this point students wheeled the chalkboard into the lobby and continued with their
investigation. Albert went to the board, drew another version of the grid and then reasoned
for himself, while the rest listened, that rotating it 90 degrees made mathematical sense.

This event was not an isolated incident. Consistently throughout the geometry and
decision-making courses students evidenced a growing disposition to engage collectively in
mathematical searches, applying multiple problem-solving strategies to unfamiliar problem
situations. In the final course, the teacher paid explicit attention to having students consider
a problem situation from the point of view of children's learning. What might be the
different ways in which youngsters might approach a problem? What simulations, models,
and representations might enhance children's understanding of the mathematics embedded
in a problem and in what ways?

We observed among the students an increasing reliance on their collective ability to
decide when a problem had reached resolution. In the number theory course, students
tended to look to the instructor to tell them if their solutions were correct and if their ways
of reasoning made sense. At the same time, the teacher resisted being drawn in by their
demand to be told if they were right. She refused to be the authority who established truth.
Instead, she insisted on questioning and collaborating with them rather than telling them.
Over the three courses we observed a shift in the locus of epistemological authorityfrom
a reliance on the teacher to their community of classmates and teacher together using
mathematical tools and standards to decide about the reasonableness of processes and the
results of investigations.

In "Making Purple," Albert challenged what he considered the "arbitrariness" of
rotating the transparency. And he accepted the challenge put forth by the teacher to make
sense of it for himself. Interestingly, the initial questionWhich combination of spins
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maximizes the probability of getting purple?was never answered. By exploring in depth
two spins on Spinner 2, the class'was comfortable that they could answer the question. They
demonstrated they had the knowledge to analyze the situation, consider various ways to
think about it, and draw on a repertoire of models to represent and make sense of the
situation. At this point, the solution was straightforward.

Changing Preservice Teachers' Beliefs About Community
In the preceding discussion we provided vignettes of a classroom where a community

of learners was constructed. Within that community over time we observed a cohort of
students display a shared responsibility for engaging in mathematical searches, an increased
confidence in their ability to apply knowledge in unfamiliar problem contexts, and a reliance
on their collective competence to decide when a problem had reached resolution. Students
themselves had become the judges of the validity of the arguments they put forward. We
have considerable evidence of a change in their behavior as adult learners of mathematics.
But was the intervention powerful enough to alter deeply held beliefs about how
mathematics is learned or the use of small groups in the mathematics classroom?

Communities of Small Groups
There were two important sites in which a community was constructed. The first was

in small groups. The cohort of 23 students in our project had been together in the program
for 20 weeks when they entered the first mathematics course. In their earlier foundations
courses, they had worked together in small subject matter interest groupslanguage arts,
social studies, mathematics, and scienceand had already formed friendships and working
relationships, both in and out of class.'

All three mathematics courses were held in a room typically used for seminars and
faculty colloquia. The room contained seven tables, arranged in a U-formation.
Upholstered swivel chairs lined each side of the long rows of tables. From almost the first
day, students arranged themselves at the tables in ways that seldom varied.

Initial groupings were naturally formed largely on the basis of familiarity. However,
once group work became the norm, these grouping arrangements tended to solidify.
Students found within their small groups others with whom they could work comfortably and
where they could assume a role that fit with their sense of self. In a discussion in the
mathematics methods course, the students talked about their perceptions of how they

70f the 23 students, 4 chose mathematics as their subject matter interest, 8 chose science, 6 social studies, and 5 language
arts.
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formed groups earlier. The notion of being comfortable in a group was echoed by many of
the students. The students in one group were the least confident of all class members in
their mathematical ability. They found support among each other. As Kim commented
when asked why she chose that group: "I came in late and it was the group I felt
comfortable with. We had started working together outside of class winter term. It's easier
to take risks in this group.

Two of the strongest personalities, Lori and Jim, were in a second group. They were
confident in their mathematical abilities and often were able to see some of the subtleties
in a problem situation before others. Lori said that on one occasion she had to sit with
another group:

I wouldn't feel as comfortable in one group as another. I would work with
them but it would take me longer to do math with another group than my
group. One day I came in late and sat with Anita, Karen, and those guys. It
wasn't that I didn't work with them or didn't like them but it wasn't the same.
It doesn't mean they didn't accept me or we wouldn't accept someone else but
[pause] there is something there [about being comfortable].

Sharon almost always worked with Lori and Jim even though she was not nearly as confident
as they. She explained how she found her way to that group:

I just came in and sat with Lori and Jim and Linda and they included me
even though they didn't know me and gave me work to do that I could do.
And so I began to feel part of the group and they kind of dragged me along
with them.

Kelly talked about a particular dynamic that she thought might account for choices
in working groups. She was addressing Bonnie, a student with whom she frequently worked:

You have a role with the group you're in. You sat with us and you talked and
we listened. You were the leader; that is your role. Whetheryou were aware
of it or not, you were the leader and comfortable with that. If you had been
in the group with Lori and Jim, you might not have been able to be that
leader. I keep thinking of the role you take in your group.

A few students worked with whomever they were near. Barbara had a hard time
getting to class on time and sat wherevu there was an available chair, usually on the right
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side of the room. Albert drifted about the room, sitting with different groups but often
initially working alone on a problem before sharing his work with others.

The teacher chose not to meddle with the natural groupings that were established
early on. The decision reflected her sensitivity to and respect for different personalities and
levels of confidence with mathematics among the adult students. Although she thought
there might be some benefit to reordering the groups occasionally, she worried that invading
and disrupting their spaces could be counterproductive to creating a safe environment in
which students would be willing to take mathematical risks.

We administered a questionnaire to the teacher candidates in our study on a number
of occasions. Several of the items were intended to assess beliefs about the value of small-
group work in the elementary mathematics classroom. One item posed the following
question:

In social studies classes students are frequently asked to work in small groups
on assigned tasks. Is work in small groups appropriate for mathematics
classes? Explain.

In their first response in Fall 1987 (prior to enrollment in the sequence of mathematics
courses), nearly all the prospective teachers tended to think that group work might aid
"slower" learners or help youngsters to review, as these examples of their explanations show:

Yes, because people of higher skill are often able to explain math to peers in
a way that might be [more] useful to them than what the teacher says.

I feel that grouping in mathematics would be a good idea at specific times like
maybe when students are reviewing material, studying theories or principles,
they can help each other learn if problems arise. But, often the children
should complete their own work first before they meet in the groups and then
discuss the math subject at hand.

By the time of the last administration of the questionnaire in June 1989, they had come to
value goup work for very different reasons, as the following responses portray:

Definitely. People who work together see the ways others think about things.
The input of others is often helpful in forming your own views. It is also
helpful to tell others how you are thinking. By verbalizing, you are more able
to solidify your views.
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By talking about their understanding with each other, misconceptions can be
detected. It is also beneficial when peers challenge each others' thinking (as
well as the teacher).

Every student commented on at least one of these values they associated with small-
group work: (a) communicating about mathematical ideas, (b) talking with others to clarify
one's own understanding, (c) being more willing to take mathematical risks within small
groups, (d) seeing the multiple ways in which diverse learners approach a problem situation,
(e) learning how to work collaboratively, fostering cooperation and development of social
skills, and (f) developing independence as learners. Their reflections in the final written
assignment add to this picture:

As students we worked independent of Glenda, relying on her only to guide
the problem solving situation that we were engaged in. We were organized
into groups decided upon by ourselves. The students summarized (with the
occasional help of Glenda) what we discovered. We felt socially responsible
to ask and answer questions posed by students as part of the class. (Lori)

The expectations in this classroom are higher than the average traditional
room, for we are not simply supposed to "do" a problem, we are to:
understand it, communicate our understanding, see the connection to other
concepts, know different ways to problem solve a situation and generalize a
formula. (Lynn)

Several of the students we interviewed commented on the value, if not necessity, of working
with others:

Andrea: You had to learn from each other. . . . A lot of times I look at a
problem, it's a strange problem situation and you don't know what to
do. And, you start passing ideas around and trying to think of some
way to approach the problem and pretty soon, one person's like
scratching around and then you catch on to what they were doing and
do a couple of scratches yourself and pretty soon you put everything
together.

Lori: When I could see someone else struggle over a problem and come to
the same understanding, come to the place where I was, that helped
me to learn more. And I think it helped them to learn more.

Allison: When I could explain a problem to someone else and help them, then
I knew I was successful. If I could verbalize instead of just applying.
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It's like sometimes you feel like you are almost right there and then
when you talk it out you see what you don't get. Or you figure out
that you really do have an understanding.

Community Within the Whole Class

The second site in which a community of learners was constructed was within the
whole class. Whole-class discussions primarily served three purposes: (a) posing problem
situations, (b) offering conjectures and arguments about problems and their solutions, and
(c) reflecting upon understandings and the connections and relationships among various
mathematical ideas. The teacher frequently began the class period by posing a problem
situation for students to grapple with. These problems did not lend themselves to obvious
algorithmic solutions. Often students explored the problem in small groups but there were
occasions in which the investigations occurred in the whole group or individually.

Regardless of the mode of exploration, there were opportunities to share results of
group and individual inquiry in the context of the whole class. During interviews students
often talked about the value of whole class discussions:

Anita: She [the teacher] doesn't start off by simply explaining how to do the
problem so we can check our answers. Instead, various volunteers
present their thinking strategies and approach to the problem. . . . She
explores each strategy with us. . . . She asks questions to the class and
the person presenting to help them further their thinking and to help
with clarifications.

Andrea: Well, it's really interactional, like we have a set of problems to work
on together and it makes it a lot easier because you hear someone's
idea and you have your own idea and then pretty soon you end up
arguing and working things out together. . . . Talking about
mathematics enables you to see somebody's reasoning.

As a final assignment, students were asked to select and analyze a typical class from
the intervention. Many included comments about whole-class discussions. The following
excerpts from their writing represent this well:

Discussions were clearly non-traditional in that teacher and students played
equal roles in participation, initiation, and questioning. (Anita)

During every lesson we always had a question to start off with to think about
and investigate within our groups. . . We then came back to a whole class
again and compared our ideas with others in the class. . . . Our responses are
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made in more than one mode and the linkages are then made to enrich the
ideas that we independehtly investigated in groups. (Amanda)

This is the time we usually try to formulate a general rule to use to find "n"
during a given condition. (Lynn)

Responses to class assignments are not sufficient evidence that student beliefs about
the value of small- and whole-group work have been altered. In fact, one might worry that
students give teachers what students think they want to hear in such assignments, knowing

their grade may depend on how they respond. But by triangulating data gathered through
classroom observations, questionnaires, and interviews, we feel confident that the
intervention contributed to changing these students' beliefs about the value of group work
in their experiences as learners of mathematics.

Implications for Creating Community in Their Own Classrooms

Initial Efforts in Creating Classroom Communities

Because the learning of mathematics was embedded in a context of learning to teach,
developing subject matter knowledge could be linked to developing pedagogical content
knowledge. Reflections on differences within the community of the teacher candidates
themselveshow they learned, what they focused on, the questions they asked, the strategies
they favoredhelped them to appreciate divergent views in the classroom and to talk about
children's learning in more complex ways. They talked about group work, nonroutine
problem situations and multiple representations as powerful ways to explore mathematics
and construct mathematical knowledge.

We wanted to follow a group of our students in student teaching and first-year
teaching to see in what ways and to what extent they were disposed and able to create a
community of learners within their own classrooms as they taught mathematics. In this
section we provide sketches of the efforts of two students in our intensive sample as they
worked with children.

Linda. In her student teaching, Linda consistently tried to create opportunities for
children to talk with each other about mathematics and make sense of mathematical ideas
for themselves. She developed a unit on fractions for her fourth graders. On one occasion
she us:.,d the daily "lunch count" as a problem situation. First she asked the children to
represent the fraction of students who were presen . in class. Some students wrote 25/29,
others wrote 29/25. She raised this with the class: "Here's a couple of different things I see
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people writing down. Could someone explain what this [25/29] means? . . Could someone
explain what this [29/25] means? . . . Which one of these describes the situation we have?'

Together, the class determined which fraction was appropriate. Then she posed the
question of what fraction of the children would be getting hot lunch. At this point,
controversy arose. The children debated whether the "whole" was the number of students
enrolled in the class or the number present this day. After much back-and-forth, the class
reasoned that the "whole" should be the number present because those who were absent
would not be having lunch at school.

In this context, Linda had a great deal of support from both her mentor teacher and
her fieldwork supervisor. Her mentor was particularly interested in these "new approaches,"
although she did not have experience or knowledge to give Linda much help. What she did
provide was the space for Linda to develop problem-solving situations out of the daily
experiences in the classroom even if it might mean taking "extra" time. When Linda did run
into trouble, it was her lack of subject matter knowledge that was the constraint. For
example, she did not understand the distinctiork between using fractions to represent parts
of a whole and parts ofa set. She simply saw one as a continuation of the other, as the next
lesson in the text. When she introduced these notions to the children, there was
considerable confusion. In an attempt to help students better understand the idea of parts
of a set, Linda kept going back to parts of a whole, a strategy that only led to further
confusion, for her as well as the children. Her field instructor described the situation this
way:

An analogy to a road map helps me think about what is missing for Linda.
She knows that a big picture exists. The big ideas can be represented by
cities. But some of the roads connecting the cities seem incomplete. She
doesn't always understand the subtleties. For example, in her fraction unit,
she got into trouble when she introduced her representation of equivalent
fractions. She didn't understand the big conceptual leap it required for kids.

Linda is now teaching in a private school. She and a colleague work with two groups
of students, one composed of first, second, and third graders, the other, fourth and fifth
graders. At the beginning of the school year, students were scheduled to meet for group
math instruction once a week. The remainder of the time for mathematics was spent with
children working independently. Linda's own experiences in our study, as a learner and
student teacher of mawematics, convinced her of the value of students working together as
members of a community. Committed to this view of schooling, she negotiated with her
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colleague a schedule of two to, three days a week in which small-group and large-group
learning experiences might be incorporated into the mathematics program.

Even with the principal's support for these changes, Linda has encountered resistance
from some staff and parents. Those who are resistant do not see a need for change from
current arrangements to do things differently. Their concern is that the kinds of
mathematical activities Linda wants to engage children in will take too much time, thereby
limiting the amount of material she can cover. It is not clear if Linda will be able to
withstand the pressures to conform. But she has demonstrated a disposition to create a
mathematics classroom where members of a community of students and teacher together
are "mathematical meaning makers," and the community acts on that conviction.

Allison. Allison exemplifies the beginning teacher who constantly struggles with the
tension of wanting to teach in nontraditional ways in the face of what she perceives to be
overwhelming contextual constraints. In her student teaching, Allison used some exemplary
curriculum materials aimed at developing students' conceptual understanding of perimeter,
area, surface area, and volume. She grouped her middle school students for activities but
then did not capitalize on the materials or the grouping arrangements for their power to
engage students in inquiry. She spent considerable time at the overhead, providing
examples, asking questions, calling on individual students to answer, and writing down their
correct responses.

She constantly worried that the class period was too short and that there was too
much material in the curriculum that her mentor expected her to cover. What she ended
up cutting out were the explorations that would allow students to create meaning for
mathematical ideas. For example, one day she spent nearly the entire period writing
formulas at the overhead, plugging in numbers and doing the calculations, and having
students copy this in their notebooks. At the end of the class she told us, "I get so
frustrated. These classes are so short. I don't have time for the discovery mode. I feel like
sometimes I just have to tell them, you know, tell them the formulas. It's so frustrating."
In the final term, Allison returned from student teaching dissatisfied with her attempts to
create a classroom where youngsters were encouraged to work together to make sense of
mathematical situations. This concern focused her thinking in the final mathematics course
and the curriculum seminar.

Allison is currently teaching fourth graders in a small rural district. As part of her
job interview in August, she had to teach a group of fourth and fifth graders in the presence
of several principals from the district. In preparation for her interview, she called us for
some feedback on what she was planning. She had some good ideas and some interesting
activities, but she was not focused on the mathematics or what students might gain from
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doing them. We pressed her to focus on the mathematical idea and then consider what
activities and representations would help youngsters to develop an understanding of the idea.
Her final plan incorporated small-group work, the children coming back together as a whole
group, sharing patterns they had discovered, making predictions about the continuation of
the patterns, and creating ways to test their predictions. She had many good ideas, but she
needed help to push her thinking beyond just interesting activities.

Classroom observations and interviews in her own classroom indicate that she seems
less concerned about providing opportunities for her fourth graders to engage in
mathematical investigations. She continues to struggle with some of the same constraints
that she encountered in student teaching. Time continues to be a factor, although here it
is more a matter of the time required to plan and locate or create materials. But there are
additional constraints. She has been told by the principal and the fifth-grade teachers that
they expect the students who leave her class to have mastered computr'- al facts. To that
end, she has students spend considerable time working inditldually un drill-and-practice and
timed tests.

She feels overwhelmed by the amount of preparation required to plan and teach
many subjects. On one occasion when we observed small-group work, children together
created some interesting problems related to whole number operations. But in an interview
following the lesson, Allison seemed more concerned about what she perceives to be a wide
range of mathematical ability among her students. In late winter, she implemented a self-
paced, self-testing mathematics program that the fifth-grade teacher recommended as a way
to deal with perceived differences. Each student works individually on a set of computition
exercises, checks with the answer book upon completion, and moves on to the next set of
exercises.

During one observation, Allison had the youngsters working on an ecology unit. On
this day they were given data on the per capita waste generated and recovered by a dozen
industrialized countries. Students were given the task of computing with a calculator the
percentage of waste recovered by each country. The youngsters diligently carried out their
calculations, recorded their answers in the blank column on their data sheet, and answered
some questions about various countries' efforts to recycle waste. In a conversation following
the lesson, we asked Allison if she intended to do anything further with this lesson. When
she indicated no, we suggested she consider having the youngsters make graphs as another
representation of the data on waste generation and recovery.

When we returned for a final observation the next week, there were a number of bar
graphs on the bulletin board created by the children using the data from the earlier lesso 1.

What was particularly interesting was the variety of ways that youngsters had chosen to
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represent their data. Some had displayed single comparisons of waste or recovery. Others
had combined these features to make rather elaborate graphs. Allison and the students
seemed proud of their products. Allison was particularly appreciative for the suggestion and
how well her students had done on the task.

Allison is not reluctant to ask for help from those around her. But at present, it
seems doubtful that she has colleagues who can help her to think about how to create a
classroom where learners engage collectively in mathematical inquiry. Considering the
workshops her principal has had her attend and the kinds of suggestions she has received
from colleagues, two issues seem to be of concern: how to manage the classroom efficiently
and effectively and how to ensure the computational proficiency of .iiverse learners.

The Remaining Challenge

In this paper we have examined an intervention in an elementary teacher preparation
program designed to develop in teacher candidates a conceptual understanding of
mathematics and a conceptual approach to mathematics education. Our analysis suggests
that the intervention produced significant changes in prospective teachers' beliefs about
themselves as learners of mathematics, what it means to know mathematics, and how
mathematics is learned. We believe our data support the assertion that creating a
community of learners engaged in the doing of mathematics can be a powerful influence in
increasing teacher candidates' self-confidence as mathematical problem solvers. We also
believe that creating a community of scholars takes place over time and requires creating
a total environment where students will take risks to make conjectures, offer arguments in
support of assertions, and assume the authority for deciding about the reasonableness of
mathematical representations and solutions.

Our students' efforts at creating classrooms of their own thac embody a community
of students engaged in mathematical inquiry has proved far more difficult. What this study
has uncovered is that beginning teachers who are committed to creating a different
environment in their mathematics classrooms need the support of others who share their
vision. This raises questions for all mathematics educators who are attempting to transform
mathematics teaching and learning in our elementary schools by reforming teacher
education programs.

How are we to overcome the perceived contextual constraints that lead beginning
teachers to fall back on more familiar and traditional practices once they have left the
university for their own classrooms? What kind of support is needed in the induction years
for teachers who would institute practices that are likely to be questioned in traditional
school settings? What responsibility do teacher educators have for providing some of this
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support? Can we extend the notion of community beyond the preservice program? What
kinds of communities would need to be created among professionals in schools and how can
we equip our students to be advocates of such communities? These questions deserve our
serious and continued study and our best efforts at creative solutions.
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